Pseudoknot-Generating Operation

نویسندگان

  • Da-Jung Cho
  • Yo-Sub Han
  • Timothy Ng
  • Kai Salomaa
چکیده

A pseudoknot is an intra-molecular structure formed primarily in RNA strands and much research has been done to predict efficiently pseudoknot structures in RNA. We define an operation that generates all pseudoknots from a given sequence and consider algorithmic and language theoretic properties of the operation. We give an efficient algorithm to decide whether a given string is a pseudoknot of a regular language L—the runtime is linear if L is given by a deterministic finite automaton. We consider closure and decision properties of the pseudoknot-generating operation. For DNA encoding applications, pseudoknot structures are undesirable. We give polynomial-time algorithms to decide whether a regular language L contains a pseudoknot or a pseudoknot generated by some string of L. Furthermore, we show that the corresponding questions for context-free languages are undecidable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shapes of RNA Pseudoknot Structures

In this article, we study abstract shapes of k-noncrossing, σ-canonical RNA pseudoknot structures. We consider lv1k- and lv5k-shapes, which represent a generalization of the abstract π'- and π-shapes of RNA secondary structures introduced by Giegerich et al. Using a novel approach, we compute the generating functions of lv1k- and lv5k-shapes as well as the generating functions of all lv1k- and ...

متن کامل

Dynamic programming based RNA pseudoknot alignment

Pseudoknots are certain structural motifs of RNA molecules. In this thesis we consider the problem of RNA pseudoknot alignment. Most current approaches either discard pseudoknots in order to be efficient or rely on heuristics generating only approximate solutions. This work focuses on dynamic programming based alignment methods and proposes two new approaches for an exact solution of the alignm...

متن کامل

Combinatorics of RNA structures with pseudoknots.

In this paper, we derive the generating function of RNA structures with pseudoknots. We enumerate all k-noncrossing RNA pseudoknot structures categorized by their maximal sets of mutually intersecting arcs. In addition, we enumerate pseudoknot structures over circular RNA. For 3-noncrossing RNA structures and RNA secondary structures we present a novel 4-term recursion formula and a 2-term recu...

متن کامل

Central and local limit theorems for RNA structures.

A k-noncrossing RNA pseudoknot structure is a graph over {1,...,n} without 1-arcs, i.e. arcs of the form (i,i+1) and in which there exists no k-set of mutually intersecting arcs. In particular, RNA secondary structures are 2-noncrossing RNA structures. In this paper we prove a central and a local limit theorem for the distribution of the number of 3-noncrossing RNA structures over n nucleotides...

متن کامل

Canonical RNA Pseudoknot Structures

In this paper, we study k-noncrossing, sigma-canonical RNA pseudoknot structures with minimum arc-length greater or equal to four. Let T(k, sigma)([4])(n) denote the number of these structures. We derive exact enumeration results by computing the generating function T(k, sigma)([4])(z) = summation operator(n) T(k, sigma)([4])(n)z(n) and derive the asymptotic formulas T(k, 3)([4])(n) approximate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 696  شماره 

صفحات  -

تاریخ انتشار 2016